食品伙伴网

食品工艺卫生专题-卫生质量控制专题-爱游戏全站app在线平台

食品工艺包括食品产储运销中一切有关的设备条件、工作制度和食品处理,它是影响食品卫生的重要方面。因而近年食品卫生监督在不放松食品成品卫生的同时,更加侧重于食品工艺监督。国外为此特对各类食品企业分别制订了良好生产工艺(gmp),既可深入工艺监督,又能补救市售食品监督覆盖面低(不超过20%)的情况。食品卫生监督员必须一般了解食品工艺,否则他便无法深入企业开展工作。

一 低温工艺

1.低温工艺的应用 降温可以延长微生物繁殖一代所需时间(代期),例如大肠杆菌37℃时为17—21分,20℃时则延为60分,因而有显著抑菌作用,-10℃以下能生存的微生物已很少。按照q10=k2/k1=2—3的温度与化学反应速度公式,温度每升降10℃,化学反应速度则至少增加1倍或减至l/2,可见降温对食品中酶促与非酶化学反应速度均可显著减弱。低温还能降低水的蒸气压,因而降低水分活性值,例如纯水在0、一10、一20和一30℃下,aw分别为1.00、0.907、0.823和0.750,因而对延长食品货架寿命也大有好处。上面所提几方面作用,使得低温在食品保藏上很有效而获得广泛应用。此外,低温形成冰晶并使之饱含空气,而在冰淇凌等一类食品生产中得到应用。

2.食品降温方式 制冷工艺一是利用致冷剂。最常用的是冰和食盐加冰,后者在食盐:冰为7.5:92.5、17.5:82.5和29:7l时,温度可分别降至-4.4、-11.0和-20.0℃。其他盐类也可制成此类共融冰,如氯化钙与冰为100:246和100:8l时,温度可降至-9.0和-40.3℃。液氮沸点-196℃,无毒,适于蘑菇、冻虾一类水产品等的速冻。从一195.6℃上升至一18℃,每kg液氮将吸热409kj(包括潜热200kj,显热209kj),可使食品在1—3分钟内冻结。固体co2(干冰)也常用作超低温制冷剂,比液氮花费少,沸点-78.5℃。有人也在研究食用级氟利昂作为直接制冷剂的可能性。另一降温方式为冷冻机械法。包括①用一次冷媒或二次冷媒的常用降温法。②用一30℃冷风、风速4—5m/s的吹风冻结法和风速1.5—2m/s的半吹风冻结法。③用降温金属板夹层接触食品不断移动的接触冻结法等。

3.冷冻与解冻对食品质量的影响 食品冷冻是一个过程。温度降至-l一-5℃称冰晶生成带,食品中水结冰率为85%如果冷冻缓慢,在此温度带滞留时间长,则食品中冰晶体积大而数量少。冰晶直径×长度(μm),数秒、1.5分、40分和90分钟,分别为l一5×5—10、0—2×20一50、5一100×100以上和50一200×200以上μm。冰晶数量分别为无数、多数、少数和很少。温度降至-8一-12℃、-18℃和-30℃,分别称为冻结带、冷冻带和冷冻保存带,食品中水分结冰率分别达到90%、>98%和100%。可见食品如果缓慢冻结,则其中生成的冰晶少,体积大,压迫周围组织,以至食品细胞损伤溃破,未结冰水分向冰晶集中,造成食品局部脱水,成分浓缩,ph改变。这些对食品质量不利的作用,均可由迅速降温,迅速通过冰晶生成带而得以避免。除此之外,食品冻结后体积膨胀率可达9%,其中所包含气体膨胀率更大,所以融解时以温度不高,缓慢融化为宜,否则将造成汁液流失,影响质量。例如冻肉l℃48小时、10℃25h和25℃20小时,肉汁液耗损量分别为1.76、3.27和4.22%,肌肉组织状态前二者可完全恢复,后者则只能大部分恢复。综上所述可见,食品冻结与解冻的合理工艺应是急冻缓化。所谓急冻一般是指30分钟内使食品降至-5℃以下,或-5℃冰层以每小时5—20cm速度向食品中心部推进。缓化指在0—10℃下完全融解。此外,食品冻结过程还可因降温、局部脱水及ph改变而发生蛋白质变性,是要利用还是要防止,视食品工艺目的而异。谷氨酸脱羧酶、糖原磷酸分解酶等酶类和糖甘油等多醇类有减缓蛋白质变性作用。

4.低温工艺的食品卫生问题:①选定适宜的低温范围。对低温工艺食品卫生的着眼点是降温范围适应食品产储运销中食品卫生需要。不耐藏食品一般应一直处于低温下,保持连续低温,通称冷链,其基本依据是质量耐受的适宜温度和时间,简称ttt。为此,提倡各食品企业根据自己的业务需要,经调查研究,编制包括所生产经营食品的ttt图表,用来监测食品的正确低温工艺要求。一般来讲,10℃以下一切病原性与非病原性微生物生长繁殖已大大减弱,代期明显加长,抑菌作用已很明显;0℃以下一般微生物已不能繁殖,也不能分解食品;-10℃以下能生存的微生物已极有限,但个别嗜冷菌仍可繁殖,仍不能达到无菌水平。低温下影响食品卫生质量的主要因素是脂肪氧化,肉类的超期氧化,鱼类的“油烧”,在-20一-30℃才可有效抑制,此时遮光、断氧、防止污染及金属离子触媒有重要作用。②用冰制冷时,结冰用 水应符合饮用水卫生要求。冰融解水不得滴落浸渍食品。必要时可在食品表面挂冰,即在肉鱼冷冻之后,再在表面淋水冻一层冰膜,有时挂冰水中还可添加糊料、异抗坏血酸等,既可减少食品干耗减重,又可增强保藏效果。③冷藏设备的冷媒如氨、氯化钠、氯化钙、氟利昂等不得外泄。要检修管道,保持密闭。注意防鼠、除臭、防霉以及人员、货品出入污染。④食品冷藏库应建立卫生制度,如货品先入先出,定期与出入库检质,不超期存放,严格控制并记录温湿度等。⑤导热良好的器物或食品表层,如金属、油漆、橡胶、蜡纸、蛋壳、硬糖等,均可因温度骤变而发生结露(凝结水)现象,造成食品局部水分增多以至污染,而致食品腐败、霉变,可见于粮仓顶部、蜡纸包装面包、低温下运进的鲜蛋等,须用适当苫、垫等隔热。

表9-1 一些食品适宜冷藏条件

┌──────┬──────────┬───────┬───────┐

│ 食品名称│ 温度℃ │ 湿度% │ 保藏期限 │

├──────┼──────────┼───────┼───────┤

│ 鲜 肉 │ 1—-1 │ 60—85 │ 10—20日 │

│ 鲜 鱼 │ 0-l │ 95-98 │ l—2日 │

│ 鲜 蛋 │ —2 │ 85-88 │ 数月 │

│ 鲜 奶 │ l-2 │ 70-75 │ l-2日 │

│ 菠 菜 │ 0 │ 90—95 │ 10—14日 │

│ 黄 瓜 │ 7—10 │ 90-95 │ 10-14日 │

│ 西红柿 │ 0 │ 85—‘90 │ 7日 │

│ 柿子椒 │ 7—10 │ 85- 90 │ 8-10日 │

│ 胡萝卜 │ 0 │ 90-95 │ 4—5月 │

│ 甘 薯 │ 13—16 │ 90-95 │ 4-6月 │

│ 马铃薯 │ 3—10 │ 85—90 │ 5—8月 │

│ 菜 豆 │ 3 │ 85-90 │ 8-10日 │

│ 西 瓜 │ 2-5 │ 85-90 │ 2—3周 │

│ 香 蕉 │ 13 │ 85-95 │ 6-10日 │

│ 葡 萄 │ 0-0.5 │ 85-90 │ 3—8周 │

│ 桔 子 │ 0-3 │ 85—90 │ 3—4周 │

│ 桃 │ 0 │ 85—90 │ 2—6月 │

│ 苹 果 │ 0 │ 85-90 │ 4—6月 │

│ 冻 肉 │ -10—-18 │ 96-100 │ 数月 │

│ 冻 鱼 │ -9—-18 │ 95-98 │ 数月 │

│ 冰 蛋 │ —10 │ 85-90 │ 数月 │

└──────┴──────────┴───────┴───────┘

附:猪肉经冷却至0一4℃,空气温度-18和-23℃,气流1.5—2m/s,肉内达-15℃,需72和24小时。又猪肉厚度15cm以内,在-15℃、-23.3℃和-29℃下,杀死旋毛虫时间分别为20天、10天和6天。

二、高温工艺

人类自从知道用火,深深得益于食品的热处理。热加工后的食品美味适口,提高了消化吸收率,降低了生物性病原威胁,延长了食品保藏期限。当然,热处理不当,也可产生营养素损失,形成有害热解产物等,但这毕竟是次要的。食品卫生上对高温工艺的着眼点在于正确理解高温工艺的基础上,控制食品质量变化和达到消毒杀菌要求。

1.高温工艺的应用 食品高温工艺主要应用于以改善食品色香味型即烹任意义上的热处理,食品加工所必需的加热,以及消除生物病原上的消毒杀菌。如煎炒烹炸、罐藏、焙烤、烘干浓缩、熬糖、炼油、炸制等等。工艺要点是利用适宜热源,通过水、汽、油及金属工具等介质,对食品进行热处理。

食品热处理的温度,通常考虑消毒杀菌有效、蛋白质变性与淀粉糊化等必要温度,从60℃开始即可认为是热处理。能够杀死繁殖型微生物,包括常见致病菌,而又最大限度保持食品结构及营养素的巴氏消毒法,温度范围为60一95℃。多用于鲜奶、啤酒、酱油、某些饮料等的杀菌。包括63℃30分的传统巴氏消毒法,和72—95℃10一30秒的高温瞬间巴氏消毒法,后者生产效率高,杀菌效果相同。食品热处理最常用的温度是100℃,不仅可以消除绝大多数生物病原,也是习惯上认为食物生熟的界限温度,而且以常压下水沸为标志,界限鲜明,100—120℃(应为121)是高温杀菌范围。罐头等须长期无菌保藏的食品多用此温度。须借助高压方可达到。例如在海平面温度为l00、105、110、115、120℃,压力表指示压力(kg/cm2)顺次为0、0.20、0.43、0.70、0.99。一般海拔在5000m以下,当地海拔每增高100m,为得到同等温度,压力约需增加0.01kg/cm2。当鲜奶、软罐头等有做成薄层进行热处理的条件时,可用超高温(uht)处理,即温度达120—150℃,1—3秒,鲜奶杀菌效果与前述传统的和高温瞬间巴氏消毒法等效,当然须有灵敏准确的升降温控制手段。消毒杀菌以外的热处理,基本上均应在此温度范围内。据近年研究,温度过高例如190℃以上的煎烙食物蛋白质和加热250℃以上的食用油脂,将有诱变性杂环胺及有害性脂肪酸聚合体产生,应注意避免。

2.高温工艺的热源 最普遍应用的供热方式是炉灶,虽然比较原始,但简单经济,而且在中餐烹饪上几乎是气热、电热所无法取代的。一般用隔壁灶等方式,防止煤、煤气、燃油等的污染。一火多用的万能灶,即在炉膛内安装水加热器的办法,因其温度压力不稳定,除简单采暖、供应少量热水外,作为热源意义不大。高温工艺普遍采用的供热方式是安装中央锅炉,连接管道,供水供气,可准确调控气水用量及其压力温度与时间。如供给的热水、热气直接与食品接触(如将蒸汽通入食物蒸煮锅水中),则此种锅炉应与一般采暖锅炉在水质卫生要求上不同。饼干面包等焙烤业的烤炉,在卫生上以用电烤炉为好。任何情况下均不应用烟火直接烘烤食品。啤酒厂直火烘干麦芽,是啤酒亚硝胺的主要来源;直火烘干水分高的粮食,曾证明有致癌性物质污染。用远红外线(波长1000mμ以上)加热是一种节省能源的方式,主要导热方式是辐射,穿透力强。辐射原件应选用碳化硅、氧化镁、氧化钛等安全无害材质。红外线消毒柜升降温很快,不适于陶瓷器皿消毒。另一种热源是微波加热。微波电场是超高频电场,食品中水分子是电荷分布不均匀的双极子,所以随电场方向改变而改变,频率从915到2415mhz,水分子超高频振动转化为热能。其特点是食品内(水分子)产热,升温快而受热均匀。130g的牛排,由生到熟,600w功率只需1分钟,1200w才40秒即可。120g的馒头同上条件只需40秒和20秒,150g扒牛肉,由生到熟只需3分和1分40秒。大肠杆菌15秒全部死灭。可见微波加热的优点是快速、节省能源、杀菌效果高,营养素损失少,无害。适用于水分分布均匀食品的再加热。不用金属器皿,防止微波反射,可用玻璃、陶瓷、纸、耐热塑料等盛装食品,且能旋转,使微波均匀。注意开启炉门自动切断电源,保护操作安全。

3.高温工艺对食品质量的影响 高温作用于食品,可使食品质量发生一系列改变。主要有①蛋白质变性:指高温作用下蛋白质分子四级结构改变,空间构象破坏,肽链松散开,酶等特殊蛋白质失去生理功能,氮溶解指数(nsl)下降,保水性下降,易受消化酶作用而有利于在体内消化吸收等。热处理也可使食品蛋白质由溶胶状态变成凝胶状态而改变食品构型,加热也可使食品中游离氨基酸、寡肽、嘌呤、嘧啶、肌酸等增加或溶出,而使食品有悦人的香气与美味。近年有报告称蛋白质中色氨酸、谷氨酸等,在190℃以上可热解产生有诱变性的杂环胺类化合物(见本章第五节)。②油脂经l 60—180℃以上加热,特别是达250℃时,将产生过氧化物,低分子分解产物、脂肪酸的二聚体和多聚体、碳基和环氧基等,以致油脂变色、粘度上升、脂肪酸氧化,而有一定毒性并破坏氨基酸等营养素。例如豆油180℃加热64小时,聚合物含量达26%,玉米油200℃经48小时过氧化物价由1.11至2.0l,酸价由0.2l至1.6l,粘度由0.65l至7.55l(poises法,25℃)。这些结果在国内已得到一定验证,主要呈现于反复加热的煎炸油中。为此,我国专门制订了煎炸油卫生标准及卫生管理办法,规定煎炸油除须符合食用油要求外,酸价不超过5,羰基价不超过50meq/kg,煎炸温度在250℃以下(应该再低些),煎炸后的油须滤过除渣后始得再用等(gb7102—86)。最好是少用不用反复高温处理过的油脂。③高温工艺对食品中碳水化合物有多种影响,主要有1)淀粉的a化即糊化:淀粉粒结晶被破坏,膨润与水结合,粘度增高。a化即淀粉性食物一般认为的生熟标志,要求这类食物a化至少达85%以上。这是人体吸收利用淀粉的必要条件。几种食物淀粉的糊化温度,大米、马铃薯、玉米、小麦粉分别为63.6、64.5、86.2和87.3℃。淀粉类食物热处理后的a化程度,应是高温工艺关注问题之一。2)淀粉性食物老化:俗称回生。老化与糊化是淀粉粒呈结晶态不与水结合或分子内氢键结合破坏与水结合的两个相反的过程,在一定条件下老化与糊化是可逆的。如馒头冷凉之后变硬(老化),干烤之后变软(糊化)即其一例。馒头、面包一类食品,人们均不喜欢其老化。食物老化条件是直链淀粉比例大、玉米、小麦等来源的淀粉、水分含量在30%-60%,弱酸性,0-60℃等。保持60℃以上,食物即不发生老化。蔗糖酯类、盐类、po4-3、c03-2等有脱自由水或阻止淀粉分子间结合作用的物质,均有防止食物老化作用。3)食品褐变:食品褐变有酶促褐变与非酶褐变。前者如苹果、梨、茄子中鞣酸、氯原酸等一类多酚化合物,在多酚氧化酶作用下形成红棕色的现象。后者,非酶褐变也称碳氨反应或美拉德反应。系由蛋白质、氨基酸等的氨基和糖以及脂肪氧化的醒、酮等碳基所发生的反应。使食物带有红棕色和香气,如烤面包的硬壳,酱油、豆酱的颜色气味,炼乳、果汁等的棕色物质等。有的是人们希望的,有的则是要避免的。凡原料中有氨基与碳基的高温工艺,均须注意这种褐变反应。4)碳水化合物的焦糖化:是焙烤业、糖果业高温工艺中食品的重要变化。适度焦糖化可赋与食物以悦人色泽与香气。焦糖化一般分二个阶段。150℃以下,糖类分子不断链,产生一系列异构化(a,β糖、醛酮糖异构化),分子间和分子内脱水,生成寡聚糖、无水糖等。温度超过150℃,则糖分子碳链断裂,产生低分子挥发物,如麦芽醇及某些酮类等香气物质,碱性物质有促进这种反应的作用。5)食品质量的其他影响:食品热处理最显著的变化是影响色香味型,除已叙述者外,,还有:四毗咯衍生物分解变化所致食品变色,如植物性食品中叶绿素被分解或脱掉镁离子而变褐,但在碱性下生成叶绿醇、叶绿酸、mg2 被cu2 取代则绿色反而更鲜明。血红素是动物性食品中的四吡咯色素,以血红蛋白和肌红蛋白形式存在。加热时其中珠蛋白变性,fe2 氧化成fe3 ,生成变性血色素而使肉类由红变灰。虾蟹体内类胡萝卜素与蛋白质结合,生鲜状态时呈青灰色,加热后或腐败时蛋白变性或分解,则虾蟹即显示类胡萝卜素的红黄色。许多天然食品含有低分子易挥发的香气物质,如水果、茶叶、酒类等,加热时香气浓郁,但随即因挥发丧失而失去香气,牛乳有时因所产酸、醛、酮、硫化氢等而产生热臭味。烧煮肉类的诱人香气主要是内酯、映喃、吡嗪和含硫化合物;其鲜美滋味则主要是蛋白质分解产生的谷氨酸钠、氨基酸酰胺肽、肌苷酸等,一般总称为含氮浸出物。

4.高温工艺与消毒杀茵’加热消毒杀菌的温度范围已如前述,即60一95℃的巴氏消毒,100℃的常用消毒杀菌温度,100一120℃的高温灭菌,120—150℃的超高温灭菌。消毒杀菌效果除温度外,还有湿热比干热有效,菌量少比严重污染有效,对繁殖型或幼菌细胞比对芽胞或者菌细胞有效,对细菌生存不利的环境(ph、基质等)比适于细菌生存的环境更有效等等。为了既保证消毒杀菌效果又不无谓浪费能源,各不同企业应针对所处理食品的消杀目标微生物,确定所需适宜加热要求,以d(drt)值表示。在一定温度下,能杀死食品中某种细菌量90%的时间(分),称为该菌在该温度下的90%递减时间简称d值或drt值。一般食品杀菌多采用4—5d,或5—6d值,但对低酸罐头为杀灭最危险的a、b型肉毒梭菌而主张用12d。例如12l℃下持续加热0.1-0.2×12=1.2—2.4分。即理论上允许食品中残留菌量相当原有菌量的10-12。为明确对各种细菌的杀菌条件,也可按加热致死时间曲线来估测,即在半对数纸上,横轴表示温度(℃),纵轴表示加热时间的对数(分),所做曲线。例如ph为7肉毒梭菌芽胞各座标点为:

温度(℃) 98.8 l07.2 110 115 117.5 121.1

时间(分) 417 60 32 10 8.7 2.4

在加热致死时间曲线上,121.1℃所对应的时间称为f值,一个对数周期的加热时间(如由10到100分)所对应的加热温度变化值称为z值。上例中f值为2.4分,z值为10℃(32分需110℃,320分需100℃)。高温工艺常用嗜热脂肪芽胞梭菌为指示菌,此菌最低生长温度为30-45℃,适宜温度为50—65℃,最高生长温度为70一77℃,此菌也是罐头平酸腐败的代表菌,高温工艺处理如此菌不复存在,则可说明嗜热菌也已全部死灭。此菌全部死灭所需温度与时间(℃,分)如下:100℃,1200分,105℃60分,110℃196分,115℃70分,120℃19分,125℃7分,130℃3分,135℃1分。

5.高温工艺一些实用参数 ①一些罐头的杀菌条件:850g柑桔罐头,5—23—30’/100℃,迅速冷却至38℃;3798原汁猪肉罐头,15—60—20’/121℃;227g清蒸鲑鱼罐头,15—80—15’/115.2℃;200g炖牛肉软罐头,长宽厚170x136×13mm,12l℃30分;罐头内容物ph>5.3、4.6—5.3、3.7—4.5、<3.7分别称为低酸、弱酸、酸性与强酸罐头,其杀菌适宜温度顺次分别为>110℃、105℃、90一100℃、75—80℃。②鲜奶处理条件:鲜奶有溶菌素,其作用时间因环境温度而异,在0、10、25和30℃下,可保持48、24、6和3小时;鲜奶不同保藏时间为6一12、12—18、18—24、24—30时,所需温度分别须降至10—8、8—6、6—5、5—4℃;鲜奶杀菌方法,用传统巴氏法、高温短时杀菌和超高温杀菌,其中细菌死灭率分别为97。3%一99。9%、82.8%一99.8%,99。999%一100%;全脂奶粉喷雾干燥条件:浓缩乳密度12—13be、比重1.089—1.098、干物质40%一45%、温度40一56℃、喷雾压力100—160kg/cm2、喷咀孔径1.0—1.4mm、进风温度140一200℃、干燥室温度70—90℃、排风温度75—85℃、干燥室压力-2kpa一-3.3kpa(-15一-25mmhg)、奶粉水分<2%。③饼干烘烤条件:韧性饼干与酥性饼干,炉温240一260℃,烘烤3.5—5分,成品含水2%一4%;苏打饼干炉温260—270℃,烤4—5分,水分2.5%一3.5%;粗饼干,200—210℃,烤7—10分,水分2%一5%。④熬糖工艺:蔗糖液浓度为65%、80.9%、85.7%190.4%、94.9%、98%,沸点分别为104℃、110℃、114℃、120℃、130℃、160℃。⑤加热消毒,食品企业餐茶具及其他物品首先要用加热消毒法,不可能时才可用洗消剂。因其一是杀菌效果可靠,尤其对病毒,二是消毒后有“净干亮洁”的特点而易于检查。食具小工具100℃3—5分煮沸;食具、管道、台板、大桶等用90—loo℃蒸气5一10分钟消毒。

三、脱水工艺

1.脱水工艺的应用 自然降低食品水分含量称为干燥,如日晒、阴干等;借助各种技术手段减少食品水分称为脱水,二者常混用称做脱水或干制。食品脱水处理的目的在于延长食品货架寿命,防腐保藏;减少食品重量及体积,便于贮存运输,如鲜肉1.42—2.41m3/吨,脱水后只有0.425-0.566m3/吨,鲜果品1.42-

1.56m3/吨,脱水后只有0.085—0.20m3/吨;近年脱水还成为方便与快餐食品的工艺手段,如速煮面和固体汤料等。脱水工艺普遍应用于加工奶粉、炼乳、肉松、肉干、鱼松、鱼干、蛋粉、蛋白片、饼干、谷粉、豆粉、脱水蔬菜、果干;砖茶、固体饮料等等。

2.脱水工艺概要 食品脱水虽有如上三方面目的,但脱水工艺的本质在于将食品中水分降至足以抑菌防腐程度。食品中水分存在形式有三,一为吸附于蛋白质和淀粉等大分子表面的结合水;二为在大分子表面形成二层以至多层的溶解水;三为存在于固形成分孔隙中与食品成分松散结合的自由水。食品脱水去掉的水分主要是自由水和溶解水。食品中以百分含量表示的总水分,实际上包括这三种水分及低沸点挥发物,应该正确地称之为干燥(98—105。c)减重才是。微生物生存和在食品防腐保藏中起决定作用的均是食品中的活性水分,即可以自由蒸发的水分,其蒸发难易,即蒸气压(p)高低与同一条件下纯水蒸气压(po)之比称为水分活性,简称aw或aw。若食品或溶液中水和溶质的克分子数分别为n1和n2,则p=po n1/n1十n2,或aw=p/po=n1/n1十n2。因为aw是表示食品中水分状态,而食品周围空气中水分状态以相对湿度表示,当食品水分与空气中水分平衡时,则aw=相对湿度(以小数表示)。例如空气相对湿度为90%,食品aw=0.90,如二者不相等,则说明相对湿度小或大,食品水分即将蒸发或吸水,而使aw下降或增大,直至aw=相对湿度/100为止。这个关系也是测定食品aw的根据。影响食品脱水效率的因素有温度、气压、时间、气流、气湿、食品表面积等。脱水方式往往根据工艺设备

条件和质量要求,分别采用自然干燥和人工脱水方式。主要有①晒干和风干:需要空气相对湿度低,有一定气流流速,虽简便易行,但影响食品质量。②空气对流脱水:是应用最广的脱水方式,一般在常压下,使空气自然或强制对流。应用具体方式又有强制通风柜式设备;隧道式脱水设备,比前者容量大,效率高,可连续生产;输送带或输送槽式设备;气流脱水设备,适用于粮谷干燥,水分在40%以下,脱水过程物料无固结之虞者;仓贮脱水,适用于脱水蔬菜等压片食品,先脱去大部分水,再经几十小时通暖干气流的仓贮,使物料中干湿不匀水分,得到扩散均匀;膨化脱水,与崩爆米花一样,食品达高压后突然减压。内部水蒸气膨化爆出;泡沫脱水,将蛋白类或加入起泡剂的果浆先制成泡沫状,再用热气流干燥;喷雾脱水,将浓缩奶、蛋液等喷成雾滴,增大表面积,经热气流脱水而制成奶粉、蛋粉、果汁粉类。③滚筒脱水:将液态、浆态、泥态食品与100—145℃金属滚筒接触2秒到几分钟,因其设备复杂,物料受限,且质量往往受影响,因而不是一个理想脱水方式。④真空脱水:适用于不耐高温处理的食品,如果汁粉,可在0.33kpa一0.66kpa(2.5—5mmhg),37—82℃低温真空(减压)下脱水。虽设备昂贵但产品质量优良,有时还可使物料先充惰性气体后进入真空室,发生膨化,即真空膨化相结合脱水。⑤冷冻脱水或称升华脱水:食品先经冷冻,然后再经低温真空升华脱水。食品内水分(水溶液)必须达到三相点(固态、液态、气态共存或处于平衡的条件)以下才能升华脱水。对水来说,三相点是0℃、o.63kpa(4.7mmhg)压力。实用冷冻升华条件多为一4℃、0.53kpa(4mmhg)压力以下。脱水干制品应注意包装,防止吸水。果干一类尚应防止虫卵污染及生虫,为此可用甲基溴烟熏或适宜防腐剂,品种、用量、残留量须符合添加剂使用卫生标准。有些食品如果干等还须经速化复水处理,一般有压片法、刺孔法等,使食用前易于复水。还有些食品如脱水蔬菜、砖茶等,脱水后要经压片(压块),以缩小容积有利运输,也耐保藏。脱水食品的耐保藏性和复水后的质量,是脱水工艺合理性的重要标志。

3.脱水工艺与食品质量 食品脱水过程水分蒸散速度并不一致,一般分为预备脱水期、恒率脱水期和减率脱水期等三期,前二期水分可等率减少,随时间加长,水分几乎成一定坡度直线下降,水分可脱除90%左右,但减率期水分蒸发速度大减,为脱去残存10%的水分,几乎仍需与前两期相等的时间,因此不仅耗费大量能源,而且由于食品成分在表层加浓,形成硬壳,以及随脱水过程加长所产生的一系列影响,如蛋白质变性、复水率低、脂肪酸败、褐变、焦糖化以及感官方面的改变,除所希望的改变外,多是对食品质量有影响的。为改善这些影响,近年推崇一种中间水分食品,有人称为半湿半干食品,指aw在0.6一0.85,总水分约在20%一40%之间,不仅可克服上述缺陷,尤其是减少能源消耗,降低费用,而且具有韧性口感受消费者欢迎,也有一定的耐保藏性和便于运输、包装性质。这种食品有时也可借助加入多元醇、糖、盐等“湿润剂”,以降低其aw值;使用防腐剂抑菌或其他改善食品风味外观手段。脱水过程中对食品质量的其他影响基本与高温工艺项下所述略同。由于食品脱水工艺常是温度不过高而处理时间较长,为防止工艺过程中酶对食品质量的不利影响,都在脱水前对食品先行漂烫,即70℃1—3分钟,或用o。13%亚硫酸及其盐类处理,破坏氧化酶等酶类,而使食品营养成分有更多保存,食品质量变化更小。

4.脱水工艺对食品的耐保藏性 脱水工艺的重要着眼点是增强食品的耐保藏性。微生物生长所必需的aw值:最常见的腐败菌假单胞菌o.96;沙门氏菌、大肠埃希氏菌、芽胞梭菌属0.95;乳杆菌、足球菌、分枝杆菌0.94;根霉、毛霉等食品霉变的主要霉菌0.93;微球菌及红酵母、啤酒酵母、毕赤酵母0.92;假丝酵母、圆酵母0.88;葡萄球菌0.86;青霉菌0.85;嗜盐菌0.75;曲霉0.65;接合酵母0.62;耐干霉0.60。如以总水分%计,则细菌在水分10%以下,霉菌在13%一l 6%以下,酵母在20%以下就不能生长。食品中水分至少应脱掉至奶粉8%、全蛋粉10%一11%、面粉13%一15%、脱脂奶粉15%、脱水蔬菜14%一20%以下。实际食品质量标准所要求的脱水食品水分含量标准更低些。例如全脂牛奶粉3%,羊奶粉2.5%一3%,全蛋粉4.5%,蛋黄粉4%,蛋白片16%,硬糖<3%,奶糖蛋白糖5%一9%,白沙糖o.06%一0.16%,绵白糖1.6%一2.o%,油炸方便面10%,风干方便面12.5%等等。aw值:鲜肉、鱼等等均在0.96以上,含盐12%一15%的咸食品在0.87一0.90,米面类o.60,奶粉和干菜0.20等。

四、发酵工艺

1.发酵工艺简介 发酵的严格涵义是在无氧状态下碳水化合物的分解,也称酵解。在食品工业上则泛指在微生物(酶)作用下,碳水化合物分解产酸、醇、酮、醛等的变化,实质上也包含蛋白质与脂肪的复杂分解过程。食品发酵既能损失一定的能量和营养素,也能合成一些营养物质,释放和增加人体吸收利用的一些物质,而且发酵过程还可显著改变食品的色香味型,控制发酵工艺朝向人们所希望的方向改变。面包、酱、醋、酒、发酵乳制品、豆制品、酸发酵食品,都是这样生产的。发酵工艺所需设备简单,花费低廉。发酵食品的耐保藏性,主要在于微生物分解碳水化合物,产生酒精、乳酸、醋酸、柠檬酸等,而抑制食品腐败菌的生长,起到防止腐败变质作用。

2.食品发酵工艺的类型 依优势菌种的不同,食品发酵工艺类型有:①酒精发酵。生产各种酒类都是酒精发酵产物,所用菌种有葡萄酒酵母、啤酒酵母等。②乳酸发酵,生产酸渍蔬菜类用乳酸杆菌,生产酸乳制品用乳酸链球菌、保加利亚乳杆菌和干酪乳酸杆菌等。③醋酸发酵,用醋酸菌氧化酒精可生成醋酸。醋酸菌也由此可败坏各种酒类。④丁酸发酵:是丁酸菌(酪酸菌)作用于糖、酒精的结果,常产生不良气味,是食品发酵工艺中所要防止的。

3.影响食品发酵工艺的主要因素 ①菌种:针对酿酒、乳品发酵、面团发酵、腐乳发酵、蔬菜酯制等都须使用各自适宜菌种。②温度:各菌种有其适宜生长温度,调节温度可有助于目的优势菌的尽快生长,抑制无关或有害细菌的生长。③酸度:包括食品原有和发酵形成的酸性物质,均有抑菌防腐作用。ph在4.5以下作用明显,ph2.3—2.5可杀死绝大部分腐败菌。但生膜菌一类微生物可在有氧条件下分解酸类,降低酸度,而为腐败菌生长创造条件,以致食品变质。④酒精度:酒精也有抑菌杀菌作用。一般果酒发酵,酒精达12%一15%即可抑制酵母生长,酒精再不增加,所以发酵酒中酒精只能达9%一13%(v/v),因而须靠巴氏杀菌才能保藏。若加入酒精达20%,即无须进行巴氏杀菌。⑤氧的供给:一般霉菌需氧,酵母兼性厌氧,细菌各不相同,醋酸菌需氧,乳酸菌兼性厌氧,因而发酵工艺可根据所用菌种,给以需氧或厌氧条件,并藉此引导发酵方向。⑥食盐:微生物耐盐性各有不同。酸发酵蔬菜和灌制品的乳酸菌可耐10%一18%食盐浓度,一般腐败菌在2.5%食盐浓度以上即不能生长,所以常用2%一2.5%,有的用5%一6%,甚至更高浓度食盐,在发酵初期抑制腐败菌,发酵后期则靠已形成的酸度防腐。

五、辐照工艺

1。食品辐照及其应用 食品辐照是40年代以后发展起来的新工艺,主要用于食品杀菌防腐、防治仓虫、抑制生芽,也有用于食品改性促熟的。理论上凡波长在200nm以下的电磁波均可用于辐照,但从对食品的穿透力和费用等实用方面考虑,主要用co60和cs137产生的γ射线以及电子加速器产生的10兆电子伏(mev)以下的电子束。食品辐照优于其他保藏工艺之处在于:辐照食品温度基本不上升,可保留较多营养素而有冷灭菌之称;食品可在严密包装后辐照,对竹木纸、人造纤维、塑料薄膜、玻璃、金属等包装材料无不适用,因而既可成批连续辐照,操作方便,又无后污染之虞;常用的co60是原子反应堆副产品,利用其不断蜕变放出的y射线辐照,所以一次性投资后,经常费用较少,也无额外能源消耗。辐照所用剂量以被辐照物吸收能量计。1980年以后国际上统一规定,每kg辐照物吸收辐照能1j(焦耳)称为1gy(戈瑞)。1gy的1000倍和100万倍,分别称为kgy(千戈瑞)和mgy(兆戈瑞)。在此以前辐照(吸收)剂量曾以rad(拉德)表示,lgy=100rad。食品辐照杀菌因目的与剂量不同,国际原子能机构(iaea)统一规定为三种:剂量在5kgy以下称辐照防腐,以杀死部分腐败菌,延长保存期限为目的;剂量在5一10gy称为辐照消毒,以消除无芽胞致病菌为目的;剂量达10一50kgy,称辐照灭菌,目的是用此较高剂量杀灭物料中一切微生物。

2.食品辐照工艺设备简介 由于辐照所用γ—射线与电子束穿透力很强,所以须将co60或cs137装在能完全遮断辐照射线的铅函中,下到井里,用机械卷扬装置升降。用时将辐照源提升到地面,将包装好的食品预先摆在辐照源所在地面周围,进行机械回转,翻倒,以保证均匀辐照。达到预定剂量后,将辐照源送到井下,盖好铅函,备下次使用。辐照后的食品即可运走。为保证环境周围人员安全,辐照场所周围要建造厚达1m以上的钢筋水泥围墙,隔断射线。操作人员要在安全地点遥控操作。大量食品辐照,运入运出是限制辐照工艺应用的重要因素。辐照单位要取得卫生许可证,确保辐照效能和安全,辐照工艺要有准确记录。按照1980年国际原子能机构的结论,辐照剂量不超过10kgy是安全的。

3.辐照与食品质量 经过迄今40余年的研究,认为辐照对食品发生两阶段变化。首先使物质形成离子、激发态分子或分子碎片,称为初级辐照;其次使初级辐照产物相互作用,生成新的化合物,称为次级辐照。例如经辐照之后,氧可形成臭氧,氮可形成氮氧化物,水可形成水合电子以及氢氧基和氢基等自由基,使食物中有机物发生一系列复杂产物及氢和过氧化氢等。但迄今为止,关于辐照对食品的营养与食品卫生方面的结论性意见可归纳为①营养素的损失与其他保藏方法类似;②辐照食品在常规剂量下不产生感生射线;③未发现辐照食品产生任何毒性物质,10kgy以下剂量辐照的食品,经动物试验与人体试食观察结果都是安全的;④10kgy以上剂量辐照,食品可产生感官性质变化,出现所谓辐照臭,例如肉变砖红色,有不快气味,10kgy辐照异味明显,15kgy辐照者人类便不能食用。但如冷冻(-35一-40℃)或加抗坏血酸,可因缓解了自由基的作用,而有明显改善。

4。杀菌剂量及辐照保藏 辐照杀菌所需剂量因细菌种类和环境条件而不同,一般以杀灭原菌量90%的d值(见前)表示,常用3—4d、5—6d不等,最高剂量用12d。食品中几种常见微生物d值如表9—2。

一般生物体结构越复杂各种生物的致死剂量越小,即生物越高级对辐照越敏感。例如辐照致死剂量(kgy):人与高等动物0.005-0.01,昆虫0.01—1.0,无芽胞细菌0.5—10,有芽胞细菌10—50,病毒10—200。此外,对马铃薯抑芽国外多用0.15kgy,洋葱抑芽0.05-0.15kgy,谷物防虫0.2-0.75kgy,水果防霉2—3kgy,包装鸡肉0℃时0.5—1kgy可保存21天,包装猪牛羊肉6-8kgy。我国食品卫生标准规定8种食品可以辐照保藏,其允许剂量分别为(kgy):大蒜0.l、花生仁0.4、鲜贮蘑菇1.0、马铃薯0.2、大米0.45、洋葱0.15、苹果10mev和香肠10mev均在国际公认的(1980年11月who/iaea/fao联合结论)毒理、杀菌和营养素保存上安全适宜剂量以下。

表9—2 杀灭几种食品常见微生物的d值

微生物 基质 d值(kgy)

a型肉毒梭菌 食品 4.0

b型肉毒梭菌 缓冲液 3.3

产芽胞杆菌 缓冲液 3.1

韦氏杆菌 肉 2.1—2.4

e型肉毒梭菌 肉汁 2.0

枯草杆菌 缓冲液 2.0-2.5

鼠伤寒沙门氏菌 冰蛋(缓冲液有氧) 0.7(0.2)

米曲霉 缓冲液 0.43

大肠杆菌 肉汁 0.2

假单胞菌属 缓冲液(有氧) 0.04

六、其它工艺

1.盐渍 当食品食盐浓度为10%时,aw为0.92,已有明显抑菌保藏效果,但许多细菌还不能死亡,有时要求食盐浓度高达20%。所用食盐中有害物质均应符合卫生标准,盐渍初期食品食盐未达有效浓度前要严防食品腐败与污染。

2.熏制 有冷熏(10—30℃)、温熏(30-50℃)、热熏(50—80℃)、焙熏(90—120℃)和液熏(用木材干溜液喷或浸渍食品)等方式。熏烟或熏液中虽有少许防腐物,但主要还是靠食盐、脱水及肠衣防污染等防腐保藏。效果有限,且有致癌物污染的疑虑。

3.糖渍 含糖量须达60%一65%以上才有一定防腐作用。由于不能抑制耐渗微生物,而且糖渍食品易吸水变质,故保藏效果有限。

4.气体保藏 简称ca保藏,即增加环境气体中co2、n2、降低o2比例的防腐保藏工艺。例如对苹果与梨可将环境中oz与co z比例调成3%比3%和5%比4%;或将蔬菜、水果、茶叶、奶粉等食品充氮或c0z密封包装,也有并用活性氧化铁作为脱氧剂放入包装者,可有效防霉、防脂肪酸败、保色、防腐,效果较好。

网站地图